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ABSTRACT 

 
Today, in any field of science, we can observe interdisciplinary directions, which are born from 

the fusion of related disciplines. By combining scientific fields and at the same time comparing 

the methods of different fields, we can get answers to new questions that go beyond a single 

subject. Understanding the niche model of ecology gives a new dimension to the complex study 

of the composition of living communities. The habitat of each population is determined by biotic 

and abiotic factors. The examination of biotic variables is the task of ecology, while abiotic 

variables cannot be examined with ecological methods, as the scales often used for their evaluation 

are too robust for detailed analyses. The measurements carried out by hydrologists and hydraulic 

engineers can provide a much more accurate description of these abiotic variables, so by 

combining the two, we can discover new relationships. In this study, we assigned the data of the 

20 most common fish species in the Hungarian section of the Danube River from 2004 to 2022 to 

the data of hydrological datasets and hydrodynamic simulation models, and looked for patterns 

among them using Machine Learning (ML). Among the nine abiotic factors used as independent 

variables in the analysis, the average depth velocity, water depth and bed material composition 

were the most decisive variables, which aligns with the results of previous research. In addition, 

with our Random Forest model, we were able to predict the number of individuals of the 20 most 

common fish species in the given conditions in the entire Hungarian section of the Danube. These 

estimates refer to optimal habitat for fish species according to abiotic variables. The model gives 

accurate values only in a narrow range, the so-called hydromorphological optimum, where our 

variables determine the abundance of fish. The results of the studies showed that in most cases 

biotic factors are more dominant than abiotic variables. In addition to the ML analysis, we showed 

the possibility of using the Danube fish faunistic database, which covers a large area and time, to 

investigate the relationships of the population (for example, the relationship between invasive and 

native species) using classical statistical methods. The results found here are in many cases 

consistent with the Random Forest model, but give reason to extend the model with additional 

independent variables in order to better understand the ecology of the Danube fish species. 

Keywords: Danube, hydromorphology, fish habitat, Machine Learning, modelling, Random Forest 
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1 INTRODUCTION 

 

The hydrography of Hungary is centred on the Danube, the main axis of the country's river 

network is formed by this river, and it is also organically connected to the country's groundwater 

system (Implementing the Water Framework Directive in Hungary, 2009). Consequently, it 

played a major role in the formation of the current inhomogeneous landscape structure of the 

country, since a significant part of the national landscape typology is made up of river-related 

landscape types, most of which are located along the Danube (Tózsa, 1998). In addition, as a 

central river, it has played an important role in trade, water management, residential and 

agricultural issues for centuries, as a result of which river regulation and flood control were 

established on the entire Hungarian section (Implementing the Water Framework Directive in 

Hungary, 2009). This significantly transformed the functioning of wetlands connected to the 

Danube (Farkas-Iványi & Trájer, 2015). 

A total of 105 fish species occur in Hungary, of which about 45% (n=47) are non-native, this 

includes species that have been introduced in recent years and now form self-sustaining 

populations (Erős & Vörös, 2017). The majority of these species entered Hungarian waters 

directly (with human intervention), while in the case of others, it is difficult to determine the 

exact effect or combination of effects that contributed to their introduction (e.g., Ponto-Caspian 

gobies) (Tavares, et al., 2020). 

The primary reasons for their breeding were food production, recreational (fishing) and aesthetic 

(aquaristic) uses. However, in many cases, the ecological impact of alien fish species was not 

explored prior to introduction. Many of these species became invasive after introduction and 

threaten the native fish and aquatic life (Erős & Vörös, 2017). 

Artificial intelligence (AI) has burst into science. Since it brought a lot of new opportunities in 

almost every field, it is not surprising that its use has quickly spread in ecology. Nowadays, 

practically all approaches to AI (neural networks, genetic algorithms, random forest systems, 

deep learning algorithms) are utilized in ecological research (Sylvain, et al., 2019). 

Machine Learning (ML) algorithms are generally capable of discovering patterns in data sets. 

For ecologists, this is extremely beneficial, because it supports the analysis of complex, non-

linear data, which is often the case regarding ecological questions (Olden, et al., 2008). The 

Random Forest (RF) method is a type of ML approach that is well suited for predicting variables 

in ecological applications (Bergström, et al., 2011; Elmahdy, et al., 2020; Liu, et al., 2018), 

because compared to classical statistical methods, it can easily investigate complex, non-linear 
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relationships. 

The version of the RF method we use, regression RF, is based on so-called regression trees (RT), 

which are types of decision trees (DT) built from numerical variables. These trees allow the 

estimation or clustering of a given variable with logical decisions along pre-calculated threshold 

values of the variables (Olden, et al., 2008). Based on unique data sets, RTs follow the analogy 

of rational human decisions and, broken down into linear segments, help predict more complex 

questions. The downside is that they are not flexible at all. They work well on the dataset they 

were created on, but cannot be used to interpolate other datasets, because they cannot 

accommodate different thresholds or different relationships between categories. This is where 

Random Forest (RF) comes in, combining the efficiency of RTs and the flexibility of ML, 

although it cannot exceed the range of the dataset used for training. The essence of RF is to 

generate a number of RTs using randomly selected variables and thresholds, based on a given 

training data set. To predict the dependent variable(s) based on the new data sets, it runs the value 

of each independent variable in the new database over all previously constructed RTs. In the case 

of regression RF, the estimated value will be the average of the values voted by the trees. An RF 

is thus a set of hundreds or even thousands of RTs, each of which is used to produce new 

estimates, and is thus able to adapt to unknown cases in the new dataset (Olden, et al., 2008).  

2 MATERIALS AND METHODS 

2.1 Danube fish faunistic database (DFFD) 

2.1.1 General characterisation and sampling methods 

The Danube fish faunistic database (DFFD) used for the analyses was compiled from surveys 

carried out by researchers of the Balaton Limnological Research Institute and the ELRN Centre 

for Ecological Research between 2004 and 2022 in connection with various projects. With 1668 

records it covers the entire section of the Hungarian Danube. Sampling, although using standard 

methods, was not carried out at standard time intervals and the spatial distribution of the samples 

is not uniform. 

Sampling was done using two methods between April and November. One was the shoreline 

electrofishing (SE), which was carried out both day and night. In this case, fish were taken from a 

boat drifting downstream directly from the riparian zone along the shore, most often a length of 

500 meters on the main channel, but generally between 45 and 800 meters (Figure 1a). The other 

sampling method was offshore, this is the electrified benthic frame trawl (EBFT) sampling, which 

was only carried out during the day. In this case, a fishing machine was used for sampling (most 

often the Hans-Grassl EL65 IIGI), which in most cases fished a 500 meters section, while in 

general 300-870 meters (Figure 1b) (Szalóky, et al., 2014). After identification and measurements, 
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the sampled fish were returned to the water for both methods. Together, the two methods cover 

the river basin adequately, making them suitable for combined assessment of the fish fauna of 

rivers (Zajicek & Wolter, 2018). 

Figure 1. Shoreline electrofishing (SE) (A) and Electric benthic frame trawl (EBFT) (B) in practice (source: V. Füstös) 

2.1.2 Methods of database cleaning 

First, we deleted data that were inaccurate, incomplete or beyond our study area, i.e., not within 

the Hungarian section of the Danube. Samples were considered incomplete if it was not possible 

to determine where the sampling took place (in the main channel or a side arm) and if the date, 

time of day or method of sampling was not indicated. Based on the coordinates, if the distance 

between the start and end points of the sampling was greater than the possible length of the 

sampling, the whole data or at least one pair of coordinates was deleted. Redundant variables or 

variables irrelevant for further analysis (e.g., estimates of riparian vegetation) were deleted. 

Finally, the annotations were processed too to filter out additional records from the database. 

The coordinate pairs used for the analyses were applied as follows: in cases where both 

coordinate pairs were available (70% of the samples), the average of the two was used to 

calculate the intersection point. In the case where only the starting point was available (30% of 

the samples), the starting coordinate pair was used. The projection of the coordinates used for 

the analyses was HD72/EOV (ESPG:23700). 

2.1.3 Analysis of relationships between pairs of species 

In addition to RF, we used classical statistical methods to analyse the DFFD, showing some 

examples of investigating population relationships through large-scale faunistic databases and 

compared the results with those of RF. For this analysis, we looked at the effect of one species on 

the number of individuals of the other species for two pairs, when both are present at a given 

sampling site. 

In the case of the two species pairs, we have filtered the samples in which both species are present, 

because in cases where one species is absent, the ecological complexity of the problem makes it 
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difficult to determine whether this is due to the other species or to some other variable we have 

not measured. We then plotted the data pairs on a common scatter plot. We also fitted a reference 

function f(x)=x to each scatter plot, illustrating the hypothetical case where the number of 

individuals of the two species is in direct proportion to each other. Based on the pattern of the 

points and the side of the line on which they clustered, we set up the alternative hypothesis and 

calculated the Pearson correlation coefficient to evaluate the symmetric relationship between the 

two variables. Subsequently, we calculated the proportion of each species per record, by dividing 

the number of individuals of each species with the total number of individuals of the two species. 

The means of the resulting paired samples were compared using a two-sample paired t-test with 

one-sided counterhypothesis (in R, t.test(paired=T)). Since the pairs of individuals were in all 

cases dense at small values and thinned strongly in all directions as they moved towards larger 

values, their differences did not follow a normal distribution, but the empirical distribution of their 

differences was mostly uniform and had several peaks rather than skewed. However, due to the 

large samples (30<=n), we were able to apply the two-sample paired t-test approximately 

(Reiczigel, et al., 2010). 

2.2 Random Forest modelling 

2.2.1 20 most common fish species 

In the RF model, we used data of the 20 most abundant species, the number of species and the 

number of individuals in the samples as dependent variables, and 4 sampling conditions and 5 

abiotic variables as independent variables. The 20 most abundant fish species were as follows:  

bleak (Alburnus alburnus), white bream (Blicca bjoerkna), common nase (Chondrostoma 

nasus), schraetzer (Gymnocephalus schraester), asp (Leuciscus aspius), ide (Leuciscus idus), 

burbot (Lota lota), monkey goby (Neogobius fluviatilis), round goby (Neogobius melanostomus), 

European perch (Perca fluviatilis), bighead goby (Ponticola kessleri), Danube whitefin gudgeon 

(Romanogobio vladykovi), common roach (Rutilus rutilus), cactus roach (Rutilus virgo), 

pikeperch (Sander lucioperca), Volga pikeperch (Sander volgensis), European chub (Squalius 

cephalus), vimba bream (Vimba vimba), Danube streber (Zingel streber), zingel (Zingel zingel). 

The sampling condition variables were taken from the DFFD. 

2.2.2 Abiotic variables in the model 

Of the five abiotic variables, one, water depth, was derived from the DFFD, the others were 

assigned to the data using two-dimensional (2D) hydrodynamical models or from hydrological 

databases. The variables derived from hydrological datasets are water stage and flow regime, 

which have taken one of the values of small-medium-large or flooding-receding-stagnant. The 

flow velocity (m/s) was estimated for each sampling point using the water stage, flow regime 

and the slope for that section based on retrospective measurements from measuring stations 
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placed along the Danube. 

The bed material composition of the sampling point was derived from a 2D model using the 

methods and models of the following papers: (Baranya, et al., 2018; Füstös, et al., 2019; Füstös, 

et al., 2021). 

The essence of the local bed material estimation is the bed shear stress calculated based on the 

model results for each grid point of a grid based on the water discharge, from which the bed 

material can be inferred. The water discharge in each area is obtained by a maximum likelihood 

estimation method, which, because of the relationship between the two, allows a value for the 

shear stress to be estimated probabilistically. And based on previously taken bed material 

samples and measurements, bed material types (grouped by grain size) can be assigned to the 

estimated shear stress at each grid point, yielding a very fine-scale mapping of the bed material 

composition. 

2.2.3 Model parameters 

In this paper, a regression RF model was used, which was trained on 80% of the available data, 

while the remaining 20% was used for validation. The RF model contained 150 trees and could 

get down a maximum of five levels. 

2.2.4 Testing the model 

The accuracy and effectiveness of the model was tested on data from a validating dataset of a fish 

species. Testing was performed by comparing selected samples with a randomly thinned 2D grid 

query. The median of the estimated values within a maximum distance of 150 m from each 

sampling site was compared to the measured values. 

3 RESULTS AND EVALUATION 

3.1 RF analysis results 

 
Figure 2. Average weight (Feature importance) in the presence of the most 

common fish species in the Danube of the nine biotic variables used in the model.



 

8 

 

The RF analysis showed that from the abiotic variables selected for the study, flow velocity and 

water depth were the particularly important ones, however, bed material quality was ranked as 

the third most significant (Figure 2 2). The high priority given to the first two parameters is 

consistent with the fact that, in the early days of habitat suitability research, US researchers 

began to rate habitats on these same two parameters (U.S. Fish and Wildlife Service, 1985), and 

the quality of bed material was added to the set later (Baranya, et al., 2018). Some additional 

parameters should be treated with caution. From our own experience, we know that time of day 

and sampling method also influence the species composition of the sampled fish assemblage, 

which is not reflected in the weights of these parameters. It is important to stress, however, that 

the dependent variables in our study were numbers of individuals and species, not species 

classification. This approach does not therefore allow us to show the change in composition, 

but only the change in species number and number of individuals (which, according to the 

model results, was not significant along the two sampling methods and the two time periods). 

It is also important to note that we omitted several rarer species from the model for which the 

sampling method would certainly have had a higher weight. A good example is the sterlet 

(Acipenser ruthenus), which can only be fished successfully with the EBFT method, as it prefers 

open water habitats (Szalóky, et al., 2014). 

When the weights of the nine abiotic parameters are considered by species, it’s clearly visible, 

that in case of some species the flow velocity is multi-determinative compared to the other 

variables (Figure 3). 

It is known that the European perch (Perca fluviatilis) typically prefers stagnant waterbodies, 

while the vimba bream (Vimba vimba), on the contrary, prefers faster flowing rivers with faster 

current (Harka & Sallai, 2004). Flow velocity is therefore an equally important limiting factor 

in the occurrence of both species, as shown by our model. Another observed phenomenon is 

related to the round goby (Neogobius melanostomus), in the occurrence of which RF has 

homogeneously defined a low weight for the three most important parameters (Figure 3). This 

leads to the conclusion that the species has no particular requirements in terms of hydrological 

and morphological variables. This is supported by the fact that we are talking about a generalist 

alien species that has been able to spread in the Hungarian Danube in a short period of time 

(Harka & Sallai, 2004); the invasion success of this species maybe due to this kind of 

‘undemandingness’. 



 

 

 

 

 

 

 

 

 

 
 

 
Figure 3. Weights of the 9 abiotic parameters (feature importance) involved in the occurrence of the 20 most abundant fish species for each species and for the number 

of individuals and number of species (RF).
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3.2 Using the model 

With the help of the RF model, we can create fictitious situations, queries, in which we set the 

conditions (e.g., season, water stage) and get an estimate of the individual number of each fish 

species at a given location in the Danube based on the learned relationships. This allows us to 

model the spatial distribution of fish according to abiotic variables, i.e., the suitable habitats to 

each species. 

In a query, the model provides estimates of the individual numbers of the 20 most abundant fish 

species at each point on a small-scale 2D grid over the Hungarian section of the Danube (Füstös, 

et al., 2021). The value obtained is often not a whole number, as the model averages the results 

of the regression trees, but it can be used to classify river habitats in terms of the species based 

on the relationships between the variables. 

 

3.2.1 Large-scale query: abundance map of the common roach (Rutilus rutilus) in 

spring, in a receding and flooding flow regime 

The roach is a common fish species found throughout Europe. It lives mainly in large rivers and 

lakes. It is favoured by the construction of canals and dams, as it prefers areas with slower 

current (Kottelat & Freyhof, 2007). In Hungary, it occurs everywhere except in shallow streams 

and faster flowing river sections. Juveniles are found in the kelp vegetation, while the larger 

ones are found near the shores (Harka & Sallai, 2004). 

 
Figure 4. Predicted habitats of the roach (Rutilus rutilus) in the upper section of the 

Danube on spring during flooding and receding water (RF).  

The RF model weights suggest that for this species, in addition to flow velocity and water depth, 

the bed material, river stage and water stage also have a significant influence. This is clearly 
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shown in Figure 4, which shows an overall increase in abundance during flooding, which is 

particularly evident in the Szigetköz area (a braided section of the Danube, where the river 

enters the country, on the left side of the figure). This is related to the widening of the coastal 

region due to the flood, which is a suitable habitat for the roach. 

It also shows (Figure 4) that the greatest densification areas are constant regardless of the flow 

regime. These are areas, where islands or bays provide pretty suitable habitats for the roach. 

3.2.2 Small-scale queries: abundance map of the bleak (Alburnus alburnus) in 

summer, in receding flow regime on the Radványi Island 

The bleak (Alburnus alburnus) is a common cyprinid species, which occurs in almost all of 

Europe, except the Pyrenees and Apennines. (Kottelat & Freyhof, 2007). It is a social species 

found in all, average to large, stagnant and flowing lakes and rivers. Its largest populations are 

found, among other places, in the bream zone of rivers, as it prefers slower-flowing regions 

(Harka & Sallai, 2004). 

 
Figure 5. Predicted map of optimal habitats for the bleak (Alburnus alburnus) near the 

Radványi island compared with flow velocity (v) and water depth (h). 
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Based on the weights given by the RF, the flow velocity is the most limiting factor in its 

occurrence (Figure 3). However, unlike many other species, it is less sensitive to water depth 

due to its lifestyle: feeding most often near the surface on planktonic organisms, insects that fall 

into the water, plant parts or organic debris (Harka & Sallai, 2004). This is can clearly be 

observed in the proximity of Radványi Island (Neszmély) (Figure 5), the most suitable habitats 

for the species are found in the stagnant side arm, despite the fact that the water depth value is 

quite high. 

3.3 Testing the model using the data of the bleak (Alburnus alburnus) 

To test the accuracy and effectiveness of the model, we used data on the number of individuals 

of bleak (Alburnus alburnus), which was found to be highly sensitive to flow velocity based on 

the weights given by the model (Figure 3) and the validation dataset contained the highest 

number of non-zero records for this species. The samples were selected according to the 

variables affecting the velocity. So that 26 samples taken in July (the month was chosen 

because, although not very important for this species, it is dominant in the spatial distribution) 

in mid-water stage and receding flow regime, which were represented in the validation data to 

which the medians of the model estimates were assigned. 

 
Figure 6. Sampled individual numbers of bleak (Alburnus alburnus) from the validating dataset (dark 

blue) in increasing order with quartiles and estimated individual values belonging to them (light blue).  

The model gave similar values for all samples under the given conditions (σ = 14,25; range = 

42,81). In contrast, the true individual numbers took values over a much larger range (σ = 41,53; 

range = 157). In most cases the model significantly overestimates, but the difference between 
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the true and estimated values decreases from quartile to quartile and is smallest in the 4th 

quartile. In addition, as shown in the figure (Figure 6), there is a narrow interval where the error 

is acceptably small. This range is a kind of hydromorphological optimum where these variables 

determine the number of individuals. In the other cases, other abiotic variables (e.g., dissolved 

oxygen) or mostly biotic variables cause the large divergence observed, which is negative in 

most cases, so that biotic factors have a greater limiting power than the hydromorphological 

variables we used. In addition, of course, there are the large extreme values, which are outside 

the scope of the models. 

3.4 Results of the analysis of species pairs 

3.4.1 Neogobius melanostomus – Zingel streber (alien generalist – native 

specialist) 

The round goby (Neogobius melanostomus) is a highly generalist species, as confirmed by the 

weights in the RF model, as there is no prominent limiting variable (Figure 3). It does not 

prefer deep areas with too strong currents but can be found in very high abundance near the 

bottom, on practically any kind of bed material type and anywhere. It is the most common of 

the ponto-caspian goby species in the Danube. Like the other species, it is difficult to assess 

the impact of human activity in its establishment (Erős & Vörös, 2017; Tavares, et al., 2020). 

In contrast, the Danube streber (Zingel streber) is a protected species native to the Danube 

drainage, which is primarily a current-favouring species, and thus occurs in higher numbers in 

deeper parts of the riverbed in sections with stronger currents (Füstös, et al., 2021). 

 
Figure 7. Joint scatter plot of the native, specialist danube streber 

(Zingel streber) and the invasive, generalist round goby (Neogobius 

melanostomus) with a f(x)=x line. 
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There were 291 co-occurrences of the two species. The scatter plot of the number of 

individuals does not show any definite relationship between the two variables (Figure 7). On 

the other hand, the dots tend to the right of the reference line, i.e., towards the round goby 

(Figure 7), which is confirmed by the results of the paired t-test, showing that the mean 

difference between the proportions of the species is 0,20 (p<0,0001), i.e., when they occur 

together, there are on average 20% more round gobies than strebers. This may represent a 

serious trophic competition between the two species and the values obtained are worrying for 

the Danube streber population. However, the scatter plot shows that in areas where strebers 

are abundant, i.e., in deep and strong current areas, the number of round gobies is low (Figure 

7), so that the specialist species can ‘beat’ the aggressively expanding invasive species in its 

optimal habitat. 

3.4.2 Sander lucioperca – Perca fluviatilis (trophic competitors) 

The pikeperch (Sander lucioperca) and the European perch (Perca fluviatilis) can be 

competitors for food up to a certain age, as both species consume small fish as juveniles. The 

methods used for sampling on the Danube can effectively capture this size range, so it is 

interesting to investigate how these two species divide the available habitat between each 

other. 

 
Figure 8. Joint scatter plot of pike perch (Sander lucioperca) and European 

perch (Perca fluviatilis) with f(x)=x line.
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The combined scatter plot shows that the points are almost exclusively concentrated on the 

left side, i.e., at the pikeperch (Figure 8). This is supported by the results obtained from the 

proportion variables, as the estimated value of the mean difference of the two species was 0,29 

(p<0,0001 (paired t-test)). When the two species occur together, there are therefore on average 

29% more pikeperch than European perch. In addition, the scatter plot shows that with small 

numbers of individuals, the number of individuals often equal each other (Figure 8), however, 

as the results show, the pikeperch is more dominant in the Danube than its relative. This is 

supported by the results of the RF model, as the presence of the European perch is very 

strongly limited by the flow velocity (Figure 3), suggesting some kind of drift-based 

partitioning between the two species, with the pikeperch being more abundant in areas with 

stronger current and the European perch preferring slower flowing or stagnant water. Although 

the two species are not directly related (Sloss, et al., 2004), but it is possible that a form of 

vicariance underlies the phenomenon, similarly to the evolution of other species in the family 

Percidae (Near, et al., 2001). 

4 SUMMARY AND CONCLUSIONS 

In our study, fish faunistic surveys of the Danube over the last cca. 15 years (2004-2022) were 

processed and used to train an RF model. The nine parameters used as independent variables 

cover the most important hydromorphological variables and a significant part of the abiotic 

factors. The 20 fish species used as dependent variables cover the major species groups in the 

Danube (Kottelat & Freyhof, 2007). The model is unique among fish distribution prediction 

models in that it is based on a Machine Learning approach and has a large number of dependent 

and independent variables. It also covers a very large continuous area, unlike previous habitat 

modeling on the Danube, which furthermore used other methods and fewer fish species as 

dependent variables, but with similar results (Baranya, et al., 2018; Füstös, et al., 2019). The 

method above is generally applicable, given the existence of a pre-existing, detailed database 

of sampling history. 

Based on the weights of the RF model, we were able to determine the role of each abiotic 

variable in the abundance of the 20 most common fish species. The distribution of weights per 

species provides information on the generalist or specialist nature of some species. In summary, 

we found that flow velocity, water depth and bed material quality are the three most important 

variables, which aligns well with the literature (U.S. Fish and Wildlife Service, 1985; Baranya, 

et al., 2018). However, it is important to emphasize that the low weights obtained for each 
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variable do not necessarily imply a lower importance of the variable, it simply did not prove to 

be a determining factor for the given parameters (e.g., sampling method, time of day).  

The model is able to predict the distribution of individual fish species in the entire section of 

the Danube under given conditions using queries based on 2D hydrodynamic model results. 

The values it gives also follow the longitudinal and transverse relationships very well. Hence, 

our model is an excellent tool to investigate the spatial distribution of fish habitats and to predict 

changes in the conditions at both small and large scales.  

Our model is not aiming to accurately predict the actual number of fish, but rather to infer the 

appropriate habitats based on the values it provides. The tests have shown very well that biotic 

variables are much more limiting the fish distribution and abundance in some cases. 

There was a narrow interval, the hydromorphological optimum, a range where the model 

estimates were very close to reality. It sets the course of further investigation raising questions 

about variability in extent and location of this hydromorphological optimum between fish 

species. So, are there species of fish for which biotic variables are less or differently dominant? 

The analysis of species pairs using classical statistical methods showed that the weights given 

by the model can explain population relationships and determine the habitat of each species, 

and conversely, population relationships as biotic variables also can be determinant in the 

number of individuals. 

Our research has raised many more questions. It may be important to add more well-measured 

or assessable abiotic variables to the model for more accurate predictions of the suitable riverine 

habitats corresponding to each fish species. The independent variables in the model could be 

extended to include, for example, pH, which is a very important determinant in lakes (Matuszek 

& Beggs, 1988) or dissolved oxygen, which is an important abiotic factor in general. In this 

way we can indirectly investigate the influence of biotic factors. 

There are further opportunities to increase the spatial applicability of the model, which could 

cover additional stretches of the Danube or its side rivers. An obstacle to this, especially for 

side rivers, is the different hydrodynamic and hydromorphological conditions, which would 

require the introduction of new models to predict certain abiotic variables. Beyond overcoming 

these methodological obstacles, however, there are already some technical solutions to increase 

the spatial usability of ML models (Meyer & Pebesma, 2021). 

For the model to be able to estimate the number of individuals accurately, a large number of 

biotic variables would have to be added. Many of these, such as trophic relationships, are 
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extremely difficult to measure or assess (e.g., a species may be at different trophic levels at 

different ages). It is also extremely difficult to determine the impact of a species on the 

ecosystem, so it is difficult to know which biotic variables need to be included to obtain an 

accurate estimate of abundance for example (Franco, et al., 2020). Adding biotic variables 

would therefore require a deeper understanding of the population relationships of each species. 

Our research took another step towards AI-supported ecology, in presenting the applicability of 

a Random Forest model in assessing fish-habitat relationships in a very large river. The results 

on one hand showed that Machine Learning methods are promisingly able to distinguish the 

different weights of parameters affecting habitat selection of fish, and thus may help in 

increasing the efficiency of future samplings. On the other hand, it once again emphasized the 

importance of detailed, long-term databases, being the core training material for Machine 

Learning approaches. 
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Summary 

In this study, we assigned the data of the 20 most common fish species in the Hungarian section 

of the Danube River from 2004 to 2022 to the data of nine abiotic parameters, and looked for 

patterns among them using ML. Among the abiotic factors used as independent variables in the 

analysis, the average depth velocity, water depth and bed material composition were the most 

decisive variables, which aligns with the results of previous research. In addition, with our RF 

model, we can predict the suitable habitats of each fish species under given conditions and 

examining the impacts of biotic factors. Our methods can be transplanted to other large rivers, 

to investigating the ecology of fishes. 
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